Iterative schemes for approximating solution of nonlinear operators in Banach spaces
نویسندگان
چکیده
منابع مشابه
Strong Convergence of Iterative Schemes for Zeros of Accretive Operators in Reflexive Banach Spaces
We introduce composite iterative schemes by the viscosity iteration method for finding a zero of an accretive operator in reflexive Banach spaces. Then, under certain differen control conditions, we establish strong convergence theorems on the composite iterative schemes. The main theorems improve and develop the recent corresponding results of Aoyama et al. 2007 , Chen and Zhu 2006, 2008 , Jun...
متن کاملNew iteration process for approximating fixed points in Banach spaces
The object of this paper is to present a new iteration process. We will show that our process is faster than the known recent iterative schemes. We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings. We also present a numerical example for proving the rate of convergence of our res...
متن کاملIterative Approximations of Zeroes for Accretive Operators in Banach Spaces
In this paper, we introduce and study a new iterative algorithm for approximating zeroes of accretive operators in Banach spaces.
متن کاملHigh order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کاملIterative methods for nonlinear ill-posed problems in Banach spaces
In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2013
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2013-199